
-
个人经历
学习经历工作经历
-
教学与课程
《系统分析与优化》研究生课程
《最优化导论》本科生课程
-
研究方向
随着无线通信技术、嵌入式计算、微机电技术、微传感器技术及机器人技术的进步,各类具备信息耦合或物理耦合的大规模网络系统越来越多地应用于自然科学、社会科学和工程技术等领域,如计算集群、多微电网系统、无人驾驶交通网络、多无人机系统等。此类网络可以看作由多个具有感知、计算、通信和执行能力的智能体(软件代理)所组成的多智能体系统。多智能体系统可以通过协同合作完成特定的全局任务,也可以通过相互竞争以实现系统各部分的均衡。多智能体系统的分布式协同与群体智能研究成为国际热点研究领域,在人工智能、系统控制、计算机科学和通信网络等不同的学科方向得到广泛讨论并产生丰富的工程应用。对于大规模多智能体网络系统中的各类控制、决策和优化等问题,仅依赖于智能体局部数据、局部计算和局部通信的分布式方法往往比传统的集中式方法更为合理,操作起来更为灵活方便。同时分布式方法具有无需大量数据传输、防止单点网络故障和保护用户隐私等优点。采用分布式优化、决策与控制的网络系统具备自主性、鲁棒性、可扩展性等优势。因此,多智能体系统的分布式优化决策理论与控制方法近年来得到了长足的发展,并被广泛应用于工业和国防领域,如智能电网的分布式调度、无人机和小卫星的自主编队和传感器网络在线数据处理等。
主要研究领域包括:
多智能体系统的分布式优化,分布式机器学习与联邦学习,多机器人的协同感知与决策,分布式SLAM,非完全信息博弈,机器人自主对抗决策等
-
研究成果
主持国家自然科学基金青年基金一项,获得2019年上海市青年科技英才“扬帆计划”,获得第五届中国科协青年人才托举工程(指挥与控制学会)。
1、异构非共享耦合约束下的分布式优化和网络资源分配及其在神经编码中的应用
智能体在满足数据隐私限制下,通过局部计算和邻居信息交互实现网络系统的全局优化是目前研究难点问题。在资源分配中,智能体寻找能满足网络约束并优化全局指标的局部决策,具有重要价值,如电网中多发电机需在满足发电、传输和负荷约束下决策局部发电量以极小化发电成本和网络损耗。另外智能体需仅利用局部信息获得全局目标函数的一致性最优解,如分布式机器学习中(如互信息优化神经编码),智能体利用局部数据并与其它个体合作寻找全局最优的模型参数。分布式优化是当前多智能体研究的热点和难点,在大规模机器学习、物联网和边缘计算等领域具有重要意义。
1). 提出了电网、交通网、通信网等网络中共性的网络资源快速优化配置新方法。现有算法需初始决策满足全局耦合约束,带来了额外的初始协调负担,无法实现动态分配。为解决该难题,结合基于图Laplacian矩阵的对偶变量分解和变分不等式的投影梯度流算法,提出了一种无需初始化的分布式资源分配算法,能同时保证局部约束的始终可行性及全局约束的渐近可行性,实现了网络资源的即插即用式动态分配,通过仿真分析应用于智能电网的动态分布式经济调度。
2). 针对非共享耦合约束下的分布式优化难题提出了基于原始-对偶的新方法。传统“梯度+同步”方法无法在智能体异构局部约束不共享条件下实现最优解的一致性求解。提出了基于图Laplacian矩阵原始变量分解的原始对偶梯度流算法,解决了该理论难题,应用该方法解决了电网中带有传输与发电约束的分布式负荷分配难题,实现了动态约束下的在线最优分配。
3). 提出了有限比特率下通信高效的分布式优化算法。现有分布式优化中每次局部计算均伴随与邻居的信息交互,通信负担严重,成为影响整体性能的瓶颈难点。为实现通信资源受限下的分布式优化,提出了基于自适应编码-解码器的量化分布式优化算法,同时考虑了切换和固定拓扑情况,给出了最少比特率(1-bit)分析,并拓展研究了有限数据率下分布式资源分配和网络线性方程求解。
4). 提出了生物可行的神经编码学习机制。生物神经网络通过神经元的局部计算和脉冲通信高效地实现认知计算,理解其如何将外界刺激 转为内部表征(编码)为一个基本问题。解决了生物可行约束下基于Infomax原则的神经编码学习问题。受多智能体的鞍点动力学和分布式在线优化启发,提出了基于变分贝叶斯方法和采样梯度估计的互信息最优神经编码的在线学习机制,发展了多时间尺度学习机制,实现了能量约束下的互信息优化编码。
2、非合作网络非共享线性耦合约束下博弈问题的广义纳什均衡分布式计算方法
非合作网络博弈中智能体仅关心其局部收益,纳什均衡(NE)为其合理的决策组合。在很多工程网络中,非合作智能体决策需满足全局的耦合约束以保证任务可行或者网络安全,如所有通信用户使用某条链路的带宽总和应少于给定值以防止拥塞,此时博弈的解为广义纳什均衡(GNE)。由于多个指标函数与复杂约束的耦合交互以及不完备决策信息带来的理论难点,去中心的分布式GNE计算尚未得到充分研究。研究了线性全局耦合约束下非合作博弈的GNE分布式计算,提出了结合单调算子的近似(proximal)分裂法与基于图Laplacian的预调(preconditioning)矩阵的全新理论框架与方法,在去中心且耦合约束信息不共享情况下实现各类博弈GNE求解。具体成果如下:
1). 强单调博弈。提出了基于预调矩阵的前-后向算子分裂法的原始-对偶GNE分布式求解算法,实现了固定步长下的GNE加速计算,完成收敛性分析并应用于网络化纳什-古诺特博弈的均衡计算。
2). 单调博弈。分别针对等式和不等式线性约束,发展了近似交替方向乘子法和近似并行分解法的双时间尺度分布式GNE计算方法,并提出了基于单调包含模型的预调近似点算法的统一框架。
3). 异步不完全信息。为进一步拓展以上工作,需异步更新决策以消除最慢个体带来的额外等待时间并充分发挥所有个体的计算潜能。在大规模网络中智能体仅具备不完备对手决策信息。为解决以上两个难点,提出基于动态均值同步跟踪的不完备信息下带时延的异步分布式GNE计算方法。
-
发表论文
[1] Peng Yi, Yanqiong Zhang, Yiguang Hong, “Potential game design for a class of distributed optimisation problems”, Journal of Control and Decision, Vol. 1, No. 2, pp. 166-179, May 2014
[2] Xinghu Wang, Peng Yi, Yiguang Hong, “Dynamic optimization for multi-agent systems with external disturbances”, Control Theory and Technology, Vol. 12, No. 2, pp. 132-138, May 2014
[3] Peng Yi, Yiguang Hong, “Quantized subgradient algorithm and data-rate analysis for distributed optimization”, IEEE Transactions on Control ofNetwork Systems, Vol. 1, No. 4, pp. 380-392, Dec. 2014
[4] Peng Yi, Yiguang Hong, Feng Liu, “Distributed gradient algorithm for constrained optimization with application to load sharing in power systems”, Systems & Control Letters, Vol. 83, pp. 43-52, 2015
[5] Peng Yi, Yiguang Hong, “Stochastic subgradient algorithm for distributed optimization with random sleep scheme”, Control Theory and Technology, Vol. 13, No. 4, pp. 333-347, Nov. 2015
[6] Peng Yi, Yiguang Hong, Feng Liu, “Initialization-free distributed algorithms for optimal resource allocation with feasibility constraints and its application to economic dispatch of power systems”, Automatica, Vol. 74, pp. 259-269, 2016
[7] Peng Yi, Yiguang Hong, “Distributed cooperative optimization and its applications” (in Chinese), SCIENCE CHINA Mathematics, Vol. 46, No. 10, pp. 1547-1564, 2016
[8] Xianlin Zeng, Peng Yi, Yiguang Hong, “Distributed continuous-time algorithm for constrained convex optimizations via nonsmooth analysis approach”, IEEE Transactions on Automatic Control, Vol. 62, No. 10, pp. 5227-5233, 2017
[9] Xinghu Wang, Yiguang Hong, Peng Yi, Haibo Ji, Yu Kang, “Distributed optimization design of continuous-time multi-agent systems with disturbance rejection”, IEEE Transactions on Cybernetics,Vol. 47, No. 8, pp.2058-2066, 2017.
[10] Shu Liang, Peng Yi, Yiguang Hong, “Distributed Nash equilibrium seeking for aggregative games with coupled constraints”, Automatica, Vol. 85, pp. 179-185,2017.
[11] Xianlin Zeng, Peng Yi, Yiguang Hong, “Distributed Algorithm for Robust Resource Allocation with Polyhedral Uncertain Allocation Parameters”, Journal of Systems Science and Complexity, Vol.31 No. 1, pp. 103-119,2018.(J12).
[12] Youcheng Lou, Lean Yu, Shouyang Wang, Peng Yi, “Privacy preservation in distributed subgradient optimization algorithms”, IEEE Transactions on Cybernetics, Vol. 48, No. 7, 5227 - 5233, 2018
[13] Peng Yi, Jinlong Lei, Yiguang Hong, “Distributed resource allocation over random networks based on stochastic approximation”, Systems & Control Letters, Vol. 114, pp. 4451,2018
[14] Yutao Tang, Peng Yi, “Distributed coordination for a class of non-linear multi-agent systems with regulation constraints”, IET Control Theory & Applications, Vol. 12, No. 1, pp. 1-9, 2018.
[15] Peng Yi, Lacra Pavel, “Distributed generalized Nash equilibria computation of monotone games via double-layer preconditioned proximal-point algorithms”, IEEE Transactions on Control ofNetwork Systems, accepted.
[16] Xianlin Zeng, Peng Yi, Yiguang Hong, Lihua Xie, “Continuous-time distributed algorithms for extended monotropic optimization problems”, SIAM Journal on Control and Optimization, Vol. 56, No.6, pp. 3973-3993, 2018
[17] Han Zhang, Jieqiang Wei, Peng Yi, Xiaoming Hu, “Projected primal-dual gradient flow of augmented Lagrangian with application to distributed maximization of the algebraic connectivity of a network”, Automatica, vol.98, pp:34-41,2018
[18] Peng Yi, Lacra Pavel, “An operator splitting approach for distributed generalized Nash equilibria computation”, Automatica, vol. 102, pp: 111-121, 2019
[19] Peng Yi, Lacra Pavel, “Asynchronous distributed algorithms for seeking generalized Nash equilibria under full and partial decision information”, accepted by IEEE Transactions on Cybernetics as regular paper, arXiv:1801.02967, 2019
-
学术服务
《Control Theory & Technology 》Associated Editor
《Autonomous Intelligent Systems》 EIC Assistant
中国自动化学会青年工作委员会委员
中国自动化学会无人自主飞行器专委会委员
中国指挥与控制学会青年工作委员会委员